Michael Ben-Israel receives 2nd place in student platform presentation competition at the 14th International Phytotechnologies Conference Slides – September 2017

Michael Ben-Israel received 2nd place in the student platform presentation competition (out of about 50 student presenters from around the world) at the 14th International Phytotechnologies Conference in Montreal last month. Michael is a PhD Student of Dr. Kari Dunfield at University of Guelph School of Environmental Sciences

R. Aravena and B. L. Parker were Co-Principal Investigators and project team students included R. Andrea (under Dr. K. E. Dunfield), J. Fernendes and Philipp Wanner (under B. L. Parker).

Thanks also to Kamini Khosla (lab manager at Dunfield) and the G360 staff (Juliana Camillo, Steve Chapman and intern James Hommerson).

Citation: M. Ben-Israel, J. Fernandes, P. Wanner, E.A. Haack, J.G. Burken, D.T. Tsao, R. Aravena, B.L. Parker, and K.E. Dunfield. Development of a toluene phytoremediation conceptual model in shallow fractured bedrock. Platform presentation at the 14th International Phytotechnologies Conference, Montreal, Canada (September 2017).

See the presentation here:

 

Let’s Talk Science Open House Night

On Wednesday August 20th, 2017, graduate students from the G360 Institute for Groundwater Research participated in the Let’s Talk Science High-School Open House at the University of Guelph. The G360 booth included rock core obtained from the local bedrock aquifer used for the City of Guelph and surrounding communities’ water supplies and a bench-scale hydrogeologic model for visualization of groundwater flow. Over 20 members of the public visited the display and it was very well received.

G³⁶⁰ at the 2017 NGWA Conference on Fractured Rock and Groundwater

Come visit us at the NGWA Conference on Fractured Rock and Groundwater in Burlington, Vermont on October 2-3!

Dr. Beth Parker, the Director of G360, and Dr. Jessica Meyer, a G360 PhD Research Associate will be speaking on the following topics related to High-Resolution Characterization in Fractured Rock:

Quantifying Matrix Diffusion and Redox Effects on Hexavalent Chromium Plume Conditions in a Fractured Mudstone   Beth L. Parker, Ph.D.

Comparing Rock Matrix Contaminant Profiles Downgradient of a DNAPL Source after 10 Years of Groundwater Dissolution   Jessica Meyer, Ph.D.

University of Guelph field team receives June BP Safety Star award for work on the Alice Street Site

We are pleased to announce that three G360 team members were awarded the BP Safety Star in June of this year for their safe practices while performing field work at the Alice Street Site, a site that has been an active G360 research site as part of an NSERC CRD project under Dr. Beth Parker since 2014.

Here is an extract of the award nomination:

​During a Senior Management Observation, it was observed that the three University of Guelph students working on the project did an excellent job in identifying trip and slip hazards at the job site. A packer test was being performed on a well in order to measure vertical temperature changes in the well in order to evaluate groundwater flow in the bedrock. As part of the test, there were coils of wiring and tubing laying on the ground between the well and support trailer. The students placed caution tape around the area and placed several traffic cones on the edges. This was implemented on their own without any coaching or comments from AECOM supervisors. I personally thanked them and recognized them for doing a great job in identifying hazards and making the work area safe.”

Congratulations to Jonathan Munn, Carlos Maldaner, and Jeremy Fernandes.

Photo of the award recipients
From left to right: Jonathan Munn, Carlos Maldaner, and  Jeremy Fernandes receiving the BP Safety Star Award in June 2017

Free Paper Available: Monitoring the evolution and migration of a methane gas plume in an unconfined sandy aquifer using time-lapse GPR and ERT

We are pleased to announce the publication of a new open access journal article in the Journal of Contaminant Hydrology by G360 researchers in collaboration with researchers from the Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia.

https://doi.org/10.1016/j.jconhyd.2017.08.011

Abstract:
Fugitive methane (CH4) leakage associated with conventional and unconventional petroleum development (e.g., shale gas) may pose significant risks to shallow groundwater. While the potential threat of stray (CH4) gas in aquifers has been acknowledged, few studies have examined the nature of its migration and fate in a shallow groundwater flow system. This study examines the geophysical responses observed from surface during a 72 day field-scale simulated CH4 leak in an unconfined sandy aquifer at Canadian Forces Base Borden, Canada, to better understand the transient behaviour of fugitive CH4 gas in the subsurface. Time-lapse ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) were used to monitor the distribution and migration of the gas-phase and assess any impacts to groundwater hydrochemistry. Geophysical measurements captured the transient formation of a CH4 gas plume emanating from the injector, which was accompanied by an increase in total dissolved gas pressure (PTDG). Subsequent reductions in PTDG were accompanied by reduced bulk resistivity around the injector along with an increase in the GPR reflectivity along horizontal bedding reflectors farther downgradient. Repeat temporal GPR reflection profiling identified three events with major peaks in reflectivity, interpreted to represent episodic lateral CH4 gas release events into the aquifer. Here, a gradual increase in PTDG near the injector caused a sudden lateral breakthrough of gas in the direction of groundwater flow, causing free-phase CH4 to migrate much farther than anticipated based on groundwater advection. CH4 accumulated along subtle permeability boundaries demarcated by grain-scale bedding within the aquifer characteristic of numerous Borden-aquifer multi-phase flow experiments. Diminishing reflectivity over a period of days to weeks suggests buoyancy-driven migration to the vadose zone and/or CH4 dissolution into groundwater. Lateral and vertical CH4 migration was primarily governed by subtle, yet measurable heterogeneity and anisotropy in the aquifer.

This research was made possible through an NSERC Strategic Partnerships Grant Project (SPG-P) awarded to Drs. John Cherry and Beth Parker (principal investigators), and collaborators Drs. Bernhard Mayer, Ulrich Mayer and Cathryn Ryan. Dr. Aaron Cahill provided a major role with proposal writing, experimental design and overall project management, both with field implementation and project reporting, and is now a research associate at the University of British Columbia Department of Earth, Oceanic and Atmospheric Sciences. An NSERC Banting Fellowship provided support to Dr. Colby Steelman.

%d bloggers like this: